主办单位:广东时代传媒有限公司

投稿邮箱:fzggzzs@163.com

你的位置: 首页 » 论文鉴赏 » 函数项级数一致收敛性判别及应用

发展改革理论与实践封面

主管单位:南方出版传媒股份有限公司

主办单位:广东时代传媒有限公司

出版周期:半月刊

编辑出版:发展改革理论与实践杂志社

国内刊号:CN 44-1729/F

国际刊号:ISSN 1003-6709

邮发代号:46-123

开本:16开

语种:中文

投稿邮箱: fzggzzs@163.com

《发展改革理论与实践》
投稿邮箱:fzggzzs@163.com
论文鉴赏

函数项级数一致收敛性判别及应用


发布时间:2019-09-17 阅读数:644

王心怡

摘 要 函数项级数一致收敛性和函数项级数的性质有着紧密的联系,本文主要讨论函数项级数一致收敛性的判别法。给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用来解决函数项级数一致收敛的一些简单的问题。

关键词 函数项级数 一致收敛 柯西判别法

中图分类号:G642文献标识码:A

级数问题在微积分学中是非常常见的。级数包括数项级数和函数项级数,往往可以类比数项级数和函数列的收敛性和一致收敛判别法,来对函数项级数一致收敛性进行研究,并通过分析、归纳、总结并结合一些典型例子说明方法的实用性,以方便读者更好地理解函数项级数。

5结论

函数项级数一致收敛性的一般判别法主要有定义判别法、柯西判别法等常用的判别法,本文从函数项级数的定义出发,对函数项级数一致收敛性进行研究,并且对一些重要的判别方法举例说明,便于读者能够更好地理解函数项级数的一致收敛性。

参考文献

[1] 金玮.函数项级数一致收斂的判别法[J].甘肃联合大学学报,2009,23(05):110-114.

[2] 华东师范大学数学系.数学分析(下)(第 4 版)[M].北京:高等教育出版社,2010:29-38.

[3] 毛一波.函数项级数一致收敛性的判定[J].重庆文理学院学报(自然科学版)2006(04):61-62.

[4] 裴礼文.数学分析中典型问题与方法(2版)[M].高等教育出版社,2006:481-514.

[5] 崔艳兰,张婷.函数项级数中狄利克雷判别法的必要性[J].延安大学学报,2006,25(04):1-3.

[6] 钱吉林.数学分析题解精粹[M].崇文书店,2003:364-393.

[7] 张筑生.数学分析新讲(第三册)[M].北京:北京大学出版社,2002:257-264.


编辑整理:发展改革理论与实践杂志社官方网站